ADVANCES IN FORMAL MATHEMATICS

Josef Urban

Czech Technical University in Prague

Established by the European Commission

Part I: Formal Mathematics What Is Formal (Computer-Understandable) Mathematics? Examples of Formal Proof What Has Been Formalized? Foundations and Other Issues Flyspeck

Part II: Al over Formal Mathematics Learning vs. Reasoning High-level Reasoning Guidance: Premise Selection Learning Informal to Formal Translation

- · Original a student of math interested in automation of reasoning
- Wanted to learn math reasoning from large math libraries
- Wrote some formalizations
- · Involved with several formal systems/projects
- · Today mostly working on AI and automated reasoning over large libraries
- · By no means an expert on every system I will talk about! (nobody is)

Part I: Formal Mathematics

What Is Formal (Computer-Understandable) Mathematics

- Conceptually very simple:
- · Write all your axioms and theorems so that computer understands them
- Write all your inference rules so that computer understands them
- · Use the computer to check that your proofs follow the rules
- · But in practice, it turns out not to be so simple

OK, So Where Are The Hard Parts?

- · Precise computer encoding of the mathematical language
 - How do you exactly encode a graph, a category, real numbers, $\mathbb{R}^n,$ division, differentiation, computation
 - · Lots of representation issues
 - · Fluent switching between different representations
- · Precise computer understanding of the mathematical proofs
 - · "the following reasoning holds up to a set of measure zero"
 - "use the method introduced in the above pararaph"
 - "subdivide and jiggle the triangulation so that ..."
 - · "the rest is a standard diagonalization argument"

- What foundations? (Set theory, higher-order logic, type theory, ...)
- What input syntax?
- What automation methods?
- · What search methods?
- · What presentation methods?

But Computer-Understandable Math Is Coming!

- Here is my betting slide from 2014 (Paris, IHP):
- In 20 years, 80% of Flyspeck and Mizar toplevel lemmas will be provable fully automatically
- Using same hardware, same library versions as in 2014 about 40%
- · About 14% provable in 2003 in my first experiments over Mizar
- In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math curriculum textbooks will be parsed automatically and with correct formal semantics

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational. The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$a^2 = 2b^2$$
 (4.3.1)

is soluble in integers *a*, *b* with (a, b) = 1. Hence a^2 is even, and therefore *a* is even. If a = 2c, then $4c^2 = 2b^2$, $2c^2 = b^2$, and *b* is also even, contrary to the hypothesis that (a, b) = 1.

Irrationality of 2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

```
theorem Th43: :: Pythagoras' theorem
  sqrt 2 is irrational
proof
  assume sqrt 2 is rational;
  consider a,b such that
4 3 1: a^2 = 2 \cdot b^2 and
    a, b are relative prime;
  a^2 is even;
  a is even;
  consider c such that a = 2 * c;
  4 \star c^2 = 2 \star b^2;
  2 \star c^2 = b^2;
  b is even;
  thus contradiction;
end;
```

Irrationality of 2 (checkable formalization)

full Mizar formalization (for details, see: http://mizar.cs.ualberta.ca/
~mptp/mml5.29.1227/html/irrat_1.html)

```
theorem Th43: :: Pythagoras' theorem
  sgrt 2 is irrational
proof
  assume sqrt 2 is rational;
 then consider a, b such that
A1. h <> 0 and
A2: sqrt 2 = a/b and
A3: a,b are relative prime by Defl;
A4: b^2 <> 0 by A1, SQUARE 1:73;
  2 = (a/b)^2 by A2, SQUARE 1:def 4
    .= a^2/b^2 by SOUARE 1:69;
  then
4 3 1: a^2 = 2 \cdot b^2 by A4, REAL 1:43;
  then a^2 is even by ABIAN:def 1:
  then
A5: a is even by PYTHTRIP:2;
  then consider c such that
A6: a = 2*c by ABIAN:def 1;
A7: 4 * c^2 = (2 * 2) * c^2
    .= 2^2 * c^2 by SQUARE 1:def 3
    .= 2*b^2 by A6.4 3 1.SOUARE 1:68;
  2*(2*c^2) = (2*2)*c^2 by AXIOMS:16
    .= 2*b^2 by A7;
  then 2 \cdot c^2 = b^2 by REAL 1:9;
  then b^2 is even by ABIAN:def 1:
  then b is even by PYTHTRIP:2;
  then 2 divides a & 2 divides b by A5.Def2;
  then
A8: 2 divides a gcd b by INT 2:33;
  a gcd b = 1 by A3, INT 2:def 4;
  hence contradiction by A8, INT 2:17;
end;
```

Irrationality of 2 (checkable formalization)

full Mizar formalization (for details, see: http://mizar.cs.ualberta.ca/
~mptp/mml5.29.1227/html/irrat_1.html)

```
theorem Th43: :: Pythagoras' theorem
  sgrt 2 is irrational
  assume sqrt 2 is rational;
 then consider a, b such that
A1. h <> 0 and
A2: sqrt 2 = a/b and
A3: a,b are relative prime by Defl;
A4: b^2 <> 0 by A1, SQUARE 1:73;
  2 = (a/b)^2 by A2, SQUARE 1:def 4
    .= a^2/b^2 by SOUARE 1:69;
  then
4_3_1: a^2 = 2 \cdot b^2 by A4, REAL 1:43;
  then a^2 is even by ABIAN:def 1;
  then
A5: a is even by PYTHTRIP:2;
  then consider c such that
A6: a = 2*c by ABIAN:def 1;
A7: 4 \cdot c^2 = (2 \cdot 2) \cdot c^2
    .= 2^2 * c^2 by SQUARE 1:def 3
    .= 2*b^2 by A6.4 3 1.SOUARE 1:68;
  2*(2*c^2) = (2*2)*c^2 by AXIOMS:16
    .= 2*b^2 by A7;
  then 2 \cdot c^2 = b^2 by REAL 1:9;
  then b^2 is even by ABIAN:def 1:
  then b is even by PYTHTRIP:2;
  then 2 divides a & 2 divides b by A5.Def2;
  then
A8: 2 divides a gcd b by INT 2:33;
  a gcd b = 1 by A3, INT 2:def 4;
  hence contradiction by A8, INT 2:17;
end:
```

Irrationality of 2 in HOL Light

let SQRT_2_IRRATIONAL = prove (`~rational(sqrt(&2))`, SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `~((&p / &q) pow 2 = sqrt(&2) pow 2)` (fun th -> MESON_TAC[th]) THEN SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LI; REAL_POW_LT; ARITH_RULE `0 < q <=> ~(q = 0)`] THEN ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;

Irrationality of 2 in Isabelle/HOL

```
theorem sgrt2 not rational:
  "sort (real 2) ∉ 0"
proof
 assume "sqrt (real 2) \in \mathbb{Q}"
  then obtain m n :: nat where
    n_nonzero: "n \neq 0" and sqrt_rat: "!sqrt (real 2)! = real m / real n"
    and lowest_terms: "gcd m n = 1" ...
 from n_nonzero and sqrt_rat have "real m = {sqrt (real 2)} * real n" by simp
  then have "real (m^2) = (sort (real 2))^2 * real <math>(n^2)"
    by (auto simp add: power2_eq_square)
  also have "(sqrt (real 2))<sup>2</sup> = real 2" by simp
  also have "... * real (m^2) = real (2 * n^2)" by simp
  finally have eq: m^2 = 2 * n^2 ...
  hence "2 dvd m<sup>2</sup>"...
  with two is prime have dvd m: "2 dvd m" by (rule prime dvd power two)
  then obtain k where "m = 2^* k"
  with eq have "2 * n^2 = 2^2 * k^2" by (auto simp add: power2 eq square mult ac)
  hence "n^2 = 2 * k^2" by simp
  hence "2 dvd n^2"...
  with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)
  with dvd m have "2 dvd gcd m n" by (rule gcd_greatest)
  with lowest terms have "2 dvd 1" by simp
 thus False by arith
ged
```

```
Theorem irrational_sqrt_2: irrational (sqrt 2%nat).
intros p q H H0; case H.
apply (main_thm (Zabs_nat p)).
replace (Div2.double (q * q)) with (2 * (q * q));
[idtac | unfold Div2.double; ring].
case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (q * q))); auto; intros H1.
case (not_nm_INR _ _ H1); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.
rewrite H0; auto with real.
assert (q <> 0%R :> R); auto with real.
field; auto with real; case p; simpl; intros; ring.
Oed.
```

Irrationality of 2 in Metamath

\${

```
$d x y $.
$( The square root of 2 is irrational. $)
sqr2irr $p |- ( sqr ` 2 ) e/ QQ $=
```

(vx vy c2 csqr cfv cq wnel wcel wn cv cdiv co wceq cn wrex cz cexp cmulc sqr2irrlem3 sqr2irrlem5 bi2rexa mtbir cc0 clt wbr wa wi wb nngtOt adantr cr axOre ltmuldivt mp3an1 nnret zret syl2an mpd ancoms 2re 2pos sqrgtOi breq2 mpbii syl5bir cc nncnt mulzer2t syl breq1d adantl sylibd exp r19.23adv anc21i elnnz syl6ibr impac r19.22i2 mto elq df-nel mpbir) CDEZFGWDFHZIWEWDAJZBJZKLZMZBNOZAPOZWKWJANOZWLWFCQLCWGCQLRLMZBNOANOABSWIWM ABNNWFWGTUAUBWJWJAPNWFPHZWJWFNHZWNWJNNUCWFUDUEZUFWOWNWJWPNWNIWPBNWNWGMHZW IWPUGWNWQUFZWIUCGRLZWFUDUEZWPWRWTUCWHUDUEZWIWQWNWTXAUHZWQWNUFUCWGUDUEZXB WQXCWNWGUIUJWGUKHZWFUKHZXCXBUGZWQWNUCUKHXDXEXFULUCWGWFUMUNWGUOWFUPUQURUSW IUCWDUDUEXACUTVAVBWDHHUCUDVCVDVEWQWTWPUHWNWQWSUCWFUDUWQWGVFHWSUCMWGVGWGVHV IVJVKVLVMVNOWFVPVQVRVSVTABWDWAUBWDFWBWC \$.

\$([8-Jan-02] \$)

\$}

Irrationality of 2 in Metamath Proof Explorer

🗧 🐵 sqr2irr - Metamath Proof Explorer - Chromium

💦 sqr2irr - Metamat 🗴 📒

< > 😋 🗈 us.metamath.org/mpegif/sqr2irr.html

० 🕁 🚛 👜 🔳

Step	Proof of Theorem sqr2irr tep Hyp Ref Expression				
1	,p	sqr2irrlem3 10838			
2			$(x \in \mathbb{N} \land y \in \mathbb{N}) \rightarrow ((\sqrt{2}) = (x / y) \leftrightarrow (x^{2}) = (2 \cdot (y^{2})))$		
3	2	2rexbiia 2329	$(x \in \mathbb{N} \land y \in \mathbb{N}) \to ((y'2) = (x / y) \leftrightarrow (x + y) = (x + (y + z)))$ $\dots \to (3x \in \mathbb{N} \exists y \in \mathbb{N} (y'2) = (x / y) \leftrightarrow \exists x \in \mathbb{N} \exists y \in \mathbb{N} (x \uparrow 2) = (2 \cdot (y \uparrow 2)))$		
4	1.3	mtbir 288	$ (x \in \mathbb{N}) = (x \setminus y) + (x \setminus y) +$		
5		2re 8838	$12 \vdash 2 \in \mathbb{R}$		
6		2pos 8849	12 H 0 < 2		
7	5, 6	sqrgt0ii 10213	$1 + 0 < (\sqrt{2})$		
8		breq2 3595	$\dots \dots \vdash ((\sqrt{2}) = (x / y) \rightarrow (0 < (\sqrt{2}) \leftrightarrow 0 < (x / y)))$		
9	7, <u>8</u>	mpbii 200	$\dots \dots \dots \dots \mapsto \vdash ((\sqrt{2}) = (x / y) \to 0 < (x / y))$		
10		Zrc 9029	$\dots \dots \square \vdash (x \in \mathbb{Z} \rightarrow x \in \mathbb{R})$		
11	10	adantr 444	$\dots \dots \mapsto ((x \in \mathbb{Z} \land y \in \mathbb{N}) \rightarrow x \in \mathbb{R})$		
12		nnre \$788	$\dots \square \vdash (y \in \mathbb{N} \rightarrow y \in \mathbb{R})$		
13	12	adantl 445	$\dots \dots \mapsto \vdash ((x \in \mathbb{Z} \land y \in \mathbb{N}) \rightarrow y \in \mathbb{R})$		
14		nngt0 sso7	$\dots \dots \square \vdash (y \in \mathbb{N} \rightarrow 0 < y)$		
15	14	adantl 445	$\dots \dots \mapsto \vdash ((x \in \mathbb{Z} \land y \in \mathbb{N}) \to 0 < y)$		
16		gt0div soss	$\square \vdash ((x \in \mathbb{R} \land y \in \mathbb{R} \land 0 < y) \rightarrow (0 < x \leftrightarrow 0 < (x / y)))$		
17	11, 13, 15, 16	syl3anc 1145	10 \vdash $((x \in \mathbb{Z} \land y \in \mathbb{N}) \rightarrow (0 < x \leftrightarrow 0 < (x / y)))$		
18	2, 17	syl5ibr 210	$\dots \dots \to \vdash ((x \in \mathbb{Z} \land y \in \mathbb{N}) \to ((\sqrt{2}) = (x / y) \to 0 < x))$		
19		simpl 436	$\dots \dots \dots \dots \mapsto \vdash ((x \in \mathbb{Z} \land y \in \mathbb{N}) \to x \in \mathbb{Z})$		
20	<u>18, 19</u>	jctild 522	$\ldots \ldots \ast \vdash ((x \in \mathbb{Z} \land y \in \mathbb{N}) \rightarrow ((\checkmark' 2) = (x / y) \rightarrow (x \in \mathbb{Z} \land 0 < x)))$		
21		elnnz 9035	$\dots \dots \otimes \vdash (x \in \mathbb{N} \leftrightarrow (x \in \mathbb{Z} \land 0 < x))$		
22	<u>20, 21</u>	<u>syl6ibr</u> 216	$\dots \neg \vdash ((x \in \mathbb{Z} \land y \in \mathbb{N}) \rightarrow ((\sqrt{2}) = (x / y) \rightarrow x \in \mathbb{N}))$		
	22	rexlimdva 2414	$\dots \land \vdash (x \in \mathbb{Z} \to (\exists y \in \mathbb{N} (\sqrt{2}) = (x / y) \to x \in \mathbb{N}))$		
24	<u>23</u>	impac 598	$\ldots s \vdash ((x \in \mathbb{Z} \land \exists y \in \mathbb{N} (\sqrt{2}) = (x / y)) \rightarrow (x \in \mathbb{N} \land \exists y \in \mathbb{N} (\sqrt{2}) = (x / y)))$		
	<u>24</u>	reximi2 2396	$\dots \models \vdash (\exists x \in \mathbb{Z} \exists y \in \mathbb{N} (\sqrt{2}) = (x / y) \rightarrow \exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = (x / y))$		
	<u>4, 25</u>	<u>mto</u> 165	$ \vdash \neg \exists x \in \mathbb{Z} \exists y \in \mathbb{N} (\sqrt{2}) = (x / y)$		
27		<u>elq</u> 9308	$\Box : \exists \vdash ((\sqrt{2}) \in \mathbb{Q} \leftrightarrow \exists x \in \mathbb{Z} \exists y \in \mathbb{N} (\sqrt{2}) = (x / y))$		
	<u>26, 27</u>	mtbir 288	$z \vdash \neg (\sqrt{2}) \in \mathbb{Q}$		
29		df-nel 2210	$2 \vdash ((\sqrt{2}) \notin \mathbb{Q} \leftrightarrow \neg (\sqrt{2}) \in \mathbb{Q})$		
30	<u>28, 29</u>	mpbir 198	i⊢ (√'2) ∉ Q		

Colors of variables: wff set class

top 100 of interesting theorems/proofs (Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

- 1. √2 ∉ ℚ
- 2. fundamental theorem of algebra
- 3. $|\mathbb{Q}| = \aleph_0$

4.
$$a \bigsqcup_{b}^{c} \Rightarrow a^{2} + b^{2} = c^{2}$$

5.
$$\pi(x) \sim \frac{x}{\ln x}$$

- 6. Gödel's incompleteness theorem
- 7. $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$
- 8. impossibility of trisecting the angle and doubling the cube
- 32. four color theorem
- 33. Fermat's last theorem
- 99. Buffon needle problem
- 100. Descartes rule of signs

top 100 of interesting theorems/proofs (Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

- 1. √2 ∉ ℚ
- 2. fundamental theorem of algebra
- 3. $|\mathbb{Q}| = \aleph_0$

4.
$$a \underset{b}{\overset{c}{\rightarrowtail}} \Rightarrow a^2 + b^2 = c^2$$

- 5. $\pi(x) \sim \frac{x}{\ln x}$
- 6. Gödel's incompleteness theorem
- 7. $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$
- 8. impossibility of trisecting the angle and doubling the cube
- 32. four color theorem
- 33. Fermat's last theorem
- 99. Buffon needle problem
- 100. Descartes rule of signs

- all together 88% HOL Light 86% Mizar 57% Isabelle 52% Coq 49% ProofPower 42% Metamath 24% ACL 2 18%
 - ACL2 18% PVS 16%

top 100 of interesting theorems/proofs (Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

1. $\sqrt{2} \notin \mathbb{Q}$	all to
2. fundamental theorem of algebra	HC
3. $ \mathbb{Q} = \aleph_0$	HC
4. $a \swarrow_{b} \Rightarrow a^{2} + b^{2} = c^{2}$	
5. $\pi(x) \sim \frac{x}{\ln x}$	I
6. Gödel's incompleteness theorem	
7. $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$	Proc
 angle and doubling the cube 	Me
:	
32. four color theorem	
33. Fermat's last theorem	
99. Buffon needle problem	
100. Descartes rule of signs	

all together	88%
HOL Light	86%
Mizar	57%
Isabelle	52%
Coq	49%
ProofPower	42%
Metamath	24%
ACI 2	18%

PVS

16%

top 100 of interesting theorems/proofs (Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

- 1. √2 ∉ ℚ
- 2. fundamental theorem of algebra
- 3. $|\mathbb{Q}| = \aleph_0$

4.
$$a \underset{b}{\overset{c}{\rightarrowtail}} \Rightarrow a^2 + b^2 = c^2$$

- 5. $\pi(x) \sim \frac{x}{\ln x}$
- 6. Gödel's incompleteness theorem
- 7. $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$
- 8. impossibility of trisecting the angle and doubling the cube
- 32. four color theorem
- 33. Fermat's last theorem
- 99. Buffon needle problem
- 100. Descartes rule of signs

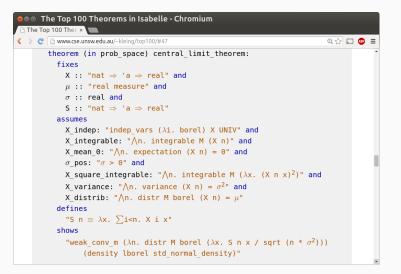
- all together 88% HOL Light 86% Mizar 57% Isabelle 52% Coq 49% ProofPower 42% Metamath 24%
 - ACL2 18% PVS 16%

Named Theorems in the Mizar Library

See FM - Chromium					
Image: State of the state o					
Mizar home, download	nload				
files: <u>abstr</u> , <u>articles</u> , bin, doc, emacs gabs,	See also Name carrying facts/theorems/definitions in MML				
fmbibs, gabs (more)	1 "Alexander\'s Lemma"	=> WAYBEL_7:31	VOTE		
semantic MML	2 "All Primes (1 mod 4) Equal the Sum of Two Squares"	=> <u>NAT_5:23</u>	VOTE		
	3 "Axiom of Choice"	=> WELLORD2:18	VOTE		
	4 "Baire Category Theorem (Banach spaces)"	=> LOPBAN_5:3	VOTE		
一個知	5 "Baire Category Theorem (Hausdorff spaces)"	=> <u>NORMSP_2:10</u>	VOTE		
用权	6 "Baire Category Theorem for Continuous Lattices"	=> WAYBEL12:39	VOTE		
MML Query (beta)	7 "Banach Fix Point Theorem for Compact Spaces"	=> <u>ALI2:1</u>	VOTE		
Transfer	8 "Banach-Steinhaus theorem (uniform boundedness)"	=> LOPBAN_5:7	VOTE		
Template maker Environment explanation	9 "Bertrand\'s Ballot Theorem"	=> <u>BALLOT_1:28</u>	VOTE		
·	10 "Bertrand\'s postulate"	=> <u>NAT_4:56</u>	VOTE		
Mizar TWiki MML Ouery server	11 "Bezout\'s Theorem"	=> NEWTON:67	VOTE		
Megrez services	12 "Bing Theorem"	=> <u>NAGATA_2:22</u>	VOTE		
Journals:	13 "Binomial Theorem"	=> BINOM:25	VOTE		
FM: MetaPRESS,	14 "Birkhoff Variety Theorem"	=> BIRKHOFF:sch 12	VOTE		
server, proof-read, regeneration	15 "Bolzano theorem (intermediate value)"	=> TOPREAL5:8	VOTE		
MM&A	16 "Bolzano-Weierstrass Theorem (1 dimension)"	=> <u>SEO_4:40</u>	VOTE		
(preparation)	17 "Borsuk Theorem on Decomposition of Strong Deformation Retracts"	=> BORSUK_1:42	VOTE		
Syntax: xml, html	18 "Borsuk-Ulam Theorem"	=> BORSUK_7:condreg	VOTE		
Downloads	19 "Boundary Points of Locally Euclidean Spaces"	=> MFOLD_0:2	VOTE		
	20 "Brouwer Fixed Point Theorem"	=> BROUWER:14	VOTE		
Mizar syntax, xml, txt	21 "Brouwer Fixed Point Theorem for Disks on the Plane"	=> BROUWER:15	VOTE		
MML 5.25.1220	22 "Brouwer Fixed Point Theorem for Intervals"	=> <u>TREAL_1:24</u>	VOTE		
- most important facts	23 "Brown Theorem"	=> GCD_1:40	VOTE		
(other collection)	24 "Cantor Theorem"	=> CARD_1:14	VOTE		
 Birkhoff 	25 "Cantor-Bernstein Theorem"	=> CARD_1:10	VOTE +		

- · Kepler Conjecture (Hales et all, 2014, HOL Light, Isabelle)
- Feit-Thompson (odd-order) theorem
 - Two graduate books
 - · Gonthier et all, 2012, Coq
- Compendium of Continuous Lattices (CCL)
 - · 60% of the book formalized in Mizar
 - · Bancerek, Trybulec et all, 2003
- The Four Color Theorem (Gonthier and Werner, 2005, Coq)

Mid-size Formalizations

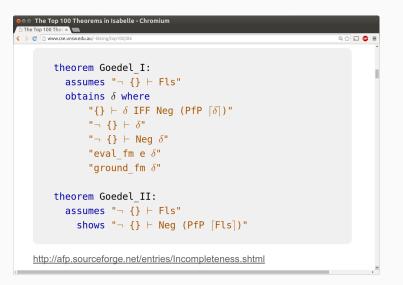

- Gödel's First Incompleteness Theorem Natarajan Shankar (NQTHM), Russell O'Connor (Coq)
- Brouwer Fixed Point Theorem Karol Pak (Mizar), John Harrison (HOL Light)
- Jordan Curve Theorem Tom Hales (HOL Light), Artur Kornilowicz et al. (Mizar)
- Prime Number Theorem Jeremy Avigad et al (Isabelle/HOL), John Harrison (HOL Light)
- Gödel's Second incompleteness Theorem Larry Paulson (Isabelle/HOL)
- Central Limit Theorem Jeremy Avigad (Isabelle/HOL)

Large Software Verifications

- seL4 operating system microkernel
 - · Gerwin Klein and his group at NICTA, Isabelle/HOL
- CompCert a formaly verified C compiler
 - · Xavier Leroy and his group at INRIA, Coq
- EURO-MILS verified virtualization platform
 - ongoing 6M EUR FP7 project, Isabelle
- CakeML verified implementation of ML
 - Magnus Myreen, HOL4

- Mizar Topology, Continuous lattices
- HOL Light Analysis and topology in Euclidean space
- Coq Finite Algebra (Mathematical Components)
- Isabelle/HOL Probability and Measure Theory

Central Limit Theorem in Isabelle/HOL


Sylow's Theorems in Mizar

```
theorem :: GROUP_10:12
for G being finite Group, p being prime (natural number)
holds ex P being Subgroup of G st P is_Sylow_p-subgroup_of_prime p;
theorem :: GROUP_10:14
for G being finite Group, p being prime (natural number) holds
  (for H being Subgroup of G st H is_p-group_of_prime p holds
    ex P being Subgroup_of_prime p & H is Subgroup of P) &
    (for P1.P2 being Subgroup_of_prime p & P2 is_Sylow_p-subgroup_of_prime p
    holds P1.P2 are_conjugated);
```

theorem :: GROUP_10:15

```
for G being finite Group, p being prime (natural number) holds
  card the_sylow_p-subgroups_of_prime(p,G) mod p = 1 &
  card the_sylow_p-subgroups_of_prime(p,G) divides ord G;
```

Gödel Theorems in Isabelle

Prime Number Theorem in HOL Light

|- ((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n))) ---> &1) sequentially

Feit-Thompson in Coq (Georges Gonthier)

• Announcement: http:

//www.msr-inria.fr/news/feit-thomson-proved-in-coq/

Final result:

http://ssr2.msr-inria.inria.fr/~jenkins/current/
mathcomp.odd_order.PFsection14.html#Feit_Thompson

• Correspondence to the books: http://ssr2.msr-inria.inria.fr/ ~jenkins/current/progress.html

Foundational Wars - Set Theory

- Mizar, MetaMath, Isabelle/ZF
- ZFC
- · Tarski-Grothendieck (added inaccessible cardinals)
- strong choice
- issues:
 - · how to add a type system
 - how to handle higher-order reasoning
 - · how to compute

Foundational Wars - Higher-order logic (HOL)

- HOL4, HOL Light, Isabelle/HOL, ProofPower, HOL Zero
- · based on polymorphic simply-typed lambda calculus
- · but quickly added extensionality and choice (classical)
- weaker than set theory canonical model is $V_{\omega+\omega}\setminus\{0\}$
- HOL universe: U is a set of non-empty sets, such that
 - U is closed under non-empty subsets, finite products and powersets
 - an infinite set $I \in U$ exists
 - a choice function *ch* over *U* exists (i.e., $\forall X \in U : ch(X) \in X$)
 - gurantees also function spaces ($I \rightarrow I$)
- · Isabelle adds typeclasses, ad-hoc overloading
- issues:
 - can be too weak
 - not so well known foundations as ZFC
 - the type system does not have dependent types (e.g. matrix over a ring)
 - how to compute

Foundational Wars - Type theory

- · Coq, Agda, NuPrl, HoTT
- constructive type theory
- Curry-Howard isomorphism:
 - formulas as types
 - proofs as terms
- · proofs are in your universe of discourse!
- two proofs of the same formula might not be equal!
- what does it mean?
- · excluded middle avoided, classical math not supported so much
- computation is a big topic
- very rich type system
- · lots of research issues for constructivists
- · non-experts typically don't have a good idea about the semantics of it all
- 'they have been calling it baroque, but it's almost rococo' (A. Trybulec)

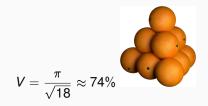
Foundational Wars - Logical Frameworks

- · LF, Twelf, MMT, Isabelle?, Metamath?
- Try to cater for everybody
- · Let users encode their logic and inference rules (deep embedding)
- issues:
 - None of them really used
 - · maintenance the embedded systems evolve fast
 - · efficiency: Isabelle/Pure ended up enriching its kernel to fit HOL
 - · efficiency: things like computation
 - · probably needs a lot of investment to benefit multiple foundations
 - · more ad-hoc translations between systems are often cheaper to develop

Example: The Flyspeck project

 Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

$$V = rac{\pi}{\sqrt{18}} \approx 74\%$$


- · Big: Annals of Mathematics gave up reviewing after 4 years
- But referees of the Annals of Mathematics claim they cannot verify the programs

$$\frac{-x_{1}x_{3}-x_{2}x_{4}+x_{1}x_{5}+x_{3}x_{6}-x_{5}x_{6}+}{+x_{2}(-x_{2}+x_{1}+x_{3}-x_{4}+x_{5}+x_{6})} < \tan(\frac{\pi}{2}-0.74)$$

$$\sqrt{4x_{2}\begin{pmatrix} x_{2}x_{4}(-x_{2}+x_{1}+x_{3}-x_{4}+x_{5}+x_{6})+\\+x_{3}x_{6}(x_{2}-x_{1}+x_{3}+x_{4}-x_{5}+x_{6})+\\+x_{3}x_{6}(x_{2}+x_{1}-x_{3}+x_{4}+x_{5}-x_{6})-\\-x_{1}x_{3}x_{4}-x_{2}x_{3}x_{5}-x_{2}x_{1}x_{6}-x_{4}x_{5}x_{6} \end{pmatrix}} < \tan(\frac{\pi}{2}-0.74)$$

Example: The Flyspeck project

• Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

- · Formal proof finished in 2014
- · 20000 lemmas in geometry, analysis, graph theory
- All of it at https://code.google.com/p/flyspeck/
- · All of it computer-understandable and verified in HOL Light:
- polyhedron s /\ c face_of s ==> polyhedron c
- However, this took 20 30 person-years!

In words, we define the Kepler conjecture to be the following claim: for every packing *V*, there exists a real number *c* such that for every real number $r \ge 1$, the number of elements of *V* contained in an open spherical container of radius *r* centered at the origin is at most

$$\frac{\pi r^3}{\sqrt{18}} + c r^2$$

An analysis of the proof shows that there exists a small computable constant c that works uniformly for all packings V, but we only formalize the weaker statement that allows c to depend on V. The restriction $r \ge 1$, which bounds r away from 0, is needed because there can be arbitrarily small containers whose intersection with V is nonempty.

Parts of Flyspeck

- combination of traditional mathematical argument and three separate bodies of computer calculations.
- nearly a thousand nonlinear inequalities.
- The combinatorial structure of each possible counterexample to the Kepler conjecture is encoded as a plane graph satisfying a number of restrictive conditions. Any graph satisfying these conditions is said to be *tame*.
- A list of all tame plane graphs up to isomorphism has been generated by an exhaustive computer search. The formal statement that every tame plane graph is isomorphic to one of these cases. This was part was done in Isabelle and imported into HOL Light.
- a large collection of linear programs.

URL: https://github.com/flyspeck/flyspeck/blob/master/ text_formalization/general/the_kepler_conjecture.hl#L69

|- import_tame_classification /\
 linear_programming_results /\
 the_nonlinear_inequalities
 ==> the_kepler_conjecture

|- g in PlaneGraphs /\ tame g ==> fgraph g in Archive

(every tame plane graph is isomorphic to a graph appearing in the archive)

Aligned Formal and Informal Math - Flyspeck

Informal Formal

Informal Formal	
Definition of [fan, blade] DSKAGVP (fan) [fan \leftrightarrow FAN]	
Let (V, E) be a pair consisting of a set $V \subset \mathbb{R}^3$ and a set E of unordered pairs of distinct elements of V . The pair is said to be a <i>fan</i> if the following properties hold.	
1. (CARDINALITY) V is finite and nonempty. [cardinality \leftrightarrow fan1] 2. (ORIGN) 0 $\notin V$. [origin \leftrightarrow fan2] 3. (NONPARALLE) if $\{\mathbf{v}, \mathbf{w}\} \in \mathcal{E}$, then \mathbf{v} and \mathbf{w} are not parallel. [nonparallel \leftrightarrow fan6] 4. (INTERSECTION) For all $\varepsilon, \varepsilon' \in E \cup \{\mathbf{v}\} : \mathbf{v} \in V$]. [intersection \leftrightarrow fan7]	
$C(\varepsilon) \cap C(\varepsilon') = C(\varepsilon \cap \varepsilon').$	Informal Formal
When $arepsilon\in E,$ call $C^0(arepsilon)$ or $C(arepsilon)$ a blade of the fan.	$\label{eq:stars} \begin{array}{l} \mbox{abschematical} \end{tabular} \\ \mbox{lef fMHome_definition`FAN(x,V,E) } & \leftarrow \end{tabular} \\ \mbox{lef fMHome_definition`FAN(x,V,E) } & \leftarrow \end{tabular} \\ \mbox{famb(x,V,E)} & \end{tabular} \\ famb(x,$
basic properties	basic properties
The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.	The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition. Informal Formal
	<pre>http://doi.org/10.1001/1001/10.1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/1001/10000/1000000</pre>
Lemma [] CTVTAQA (subset-fan)	FAN(x,V,E) /\ E1 SUBSET E
If (V,E) is a fan, then for every $E' \subset E, (V,E')$ is also a fan.	FAN(x,V,E1)`,
Proof	REPEAT GEN TAC THEN RENETTE TA([FAN;fan1;fan2;fan6;fan7;graph] THEN ASM_SET_TAC[]);;
This proof is elementary.	Informal Formal
Informal Formal	<pre>let XOHLED=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (v:real^3). FAN(x,V,E) /\ v IN V</pre>
Lemma [fan cyclic] XOHLED	<pre>==> cyclic_set (set_of_edge v V E) x v', MESON_TAC[CYCLIC_SET_EDGE_FAN]);;</pre>
$[E(v) \leftrightarrow { t set_of_edge}]$ Let (V,E) be a fan. For each ${f v} \in V,$ the set	
$E(\mathbf{v}) = \{\mathbf{w} \in V : \{\mathbf{v}, \mathbf{w}\} \in E\}$	
is cyclic with respect to $(0,\mathbf{v})$.	
Proof	
If $\mathbf{w}\in E(\mathbf{v}),$ then \mathbf{v} and \mathbf{w} are not parallel. Also, if $\mathbf{w} eq \mathbf{w}'\in E(\mathbf{v}),$ then	

Some Pointers

- The Flyspeck book (Dense Sphere Packings):
- http://www.cambridge.org/us/academic/subjects/ mathematics/geometry-and-topology/ dense-sphere-packings-blueprint-formal-proof
- You can get the source of the book at:
- https://code.google.com/p/flyspeck/source/browse/ trunk/#trunk%2Fkepler_tex
- Demo of the informal/formal Wiki at mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo
- Flyspeck final paper (A formal proof of the Kepler Conjecture): http://arxiv.org/pdf/1501.02155.pdf
- Tom Hales: Developments in Formal Proofs. Bourbaki Seminar 2014: https://www.youtube.com/watch?v=wgfbt-X28XQ
- History of Interactive Theorem Proving: http://dx.doi.org/10.1016/B978-0-444-51624-4.50004-6
- The QED+20 Workshop:

http://www.cs.ru.nl/qed20/QED-program.html

Part II: AI over Formal Mathematics

How Do We Automate Mathematics?

- · What is mathematical and scientific thinking?
- · Pattern-matching, analogy, induction from examples
- · Deductive reasoning
- · Complicated feedback loops between induction and deduction
- Using a lot of previous knowledge both for induction and deduction
- · We need to develop such methods on computers
- · Are there any large corpora suitable for nontrivial deduction?
- · Yes! Large libraries of formal proofs and theories
- So let's develop strong AI on them!

Learning vs Reasoning – Alan Turing 1950 – Al

- 1950: Computing machinery and intelligence AI, Turing test
- "We may hope that machines will eventually compete with men in all purely intellectual fields." (regardless of his 1936 undecidability result!)
- · last section on Learning Machines:
- "But which are the best ones [fields] to start [learning on] with?"
- "... Even this is a difficult decision. Many people think that a very abstract activity, like the playing of chess, would be best."
- Why not try with math? It is much more (universally?) expressive ...

Why Combine Learning and Reasoning Today?

1 It practically helps!

- · Automated theorem proving for large formal verification is useful:
 - Large-theory Automated Reasoning over Mizar (2003), Isabelle (2005), HOLs (2012,2014), Coq (2016?)
 - AI/ATP/ITP (AITP) systems like MaLARea, Sledgehammer, MizAR, HOL(y)Hammer,
- · But good learning/AI methods needed to cope with large theories!

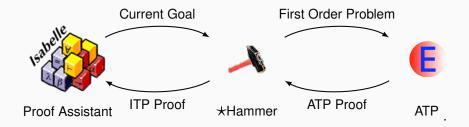
2 Blue Sky Al Visions:

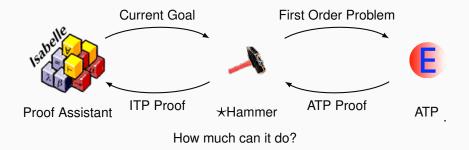
- · Get strong AI by learning/reasoning over large KBs of human thought?
- · Big formal theories: good semantic approximation of such thinking KBs?
- · Deep non-contradictory semantics better than scanning books?
- · Gradually try learning math/science:
 - What are the components (inductive/deductive thinking)?
 - · How to combine them together?
 - What is the disambiguation, conceptualization, conjecturing and knowledge-organization process?
 - "Computing" is just a particular form of "reasoning" (cf. Prolog) learn programming?

The Plan

- Make large "formal thought" (Mizar/MML, HOL/Flyspeck ...) accessible to strong reasoning and learning AI tools: DONE (or well under way)
- 2 Test/Use/Evolve existing AI tools on such large corpora:
 - deductive AI: first-order/higher-order/inductive ATPs, SMTs, decision procs.
 - inductive AI: statistical learning tools (Bayesian, kernels, neural,...),
 - inductive AI: semantic learning tools (ILP Progol; latent semantics PCA; probabilistic grammars, ...),
- Build custom/combined inductive/deductive tools/metasystems:
 - · usually combining ATP techniques with ML ideas
 - axiom/clause selection, concept/lemma creation and analogy, strategy generation, etc.
 - · high- and low-level feedback loops between reasoning and learning:
 - successful reasoning (a proof) \to informs learning \to allows better reasoning \to and so on ad infinitum ...
- Continuously test performance, define harder AI tasks as the performance grows

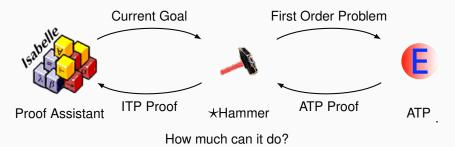
- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time impossible to use them all
- · Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose!)


- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time impossible to use them all
- · Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose!)
- Today: Premise selection is not a mysterious property of mathematicians!


- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time impossible to use them all
- · Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose!)
- · Today: Premise selection is not a mysterious property of mathematicians!
- Reasonably good algorithms started to appear (more below).

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time impossible to use them all
- · Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose!)
- · Today: Premise selection is not a mysterious property of mathematicians!
- · Reasonably good algorithms started to appear (more below).
- Will extensive human (math) knowledge get obsolete?? (cf. Watson)

Example system: Mizar Proof Advisor (started 2003)


- train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
- · input features: conjecture symbols; output labels: names of facts
- · recommend relevant facts when proving new conjectures
- · First results over the whole Mizar library in 2003:
- about 70% coverage in the first 100 recommended premises
- · chain the recommendations with strong ATPs to get full proofs
- about 14% of the Mizar theorems were then automatically provable (SPASS)

- Flyspeck (including core HOL Light and Multivariate) HOL(y)Hammer
- Mizar / MML MizAR
- Isabelle (Auth, Jinja) Sledgehammer

- Flyspeck (including core HOL Light and Multivariate) HOL(y)Hammer
- Mizar / MML MizAR
- Isabelle (Auth, Jinja) Sledgehammer

 \approx 45% success rate

Machine Learner for Automated Reasoning

- · Feedback loop interleaving ATP with learning premise selection:
- MaLARea 0.4 unordered mode, explore & exploit, etc.
- The more problems you solve (and fail to solve), the more solutions (and failures) you can learn from
- The more you can learn from, the more you solve
- MaLARea 0.5 (ordered mode, many changes): solved 77% more problems than the second system

- Hammering towards QED: http://jfr.unibo.it/article/view/4593
- Learning-Assisted Automated Reasoning with Flyspeck: http://arxiv.org/abs/1211.7012
- Machine Learner for Automated Reasoning: http://dx.doi.org/10.1007/978-3-540-71070-7_37

Learning Informal to Formal Translation

- Dense Sphere Packings: A Blueprint for Formal Proofs
 - 400 theorems and 200 concepts mapped
 - simple wiki
- Compendium of Continuous Lattices (CCL)
 - · 60% formalized in Mizar
 - · high-level concepts and theorems aligned
- · Feit-Thompson theorem by Gonthier
 - Two graduate books
- · ProofWiki with detailed proofs and symbol linking
 - General topology corresponence with Mizar
 - Similar projects (PlanetMath, ...)

[Hales13]

[BancerekRudnicki02]

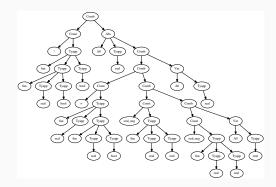
[Gonthier13]

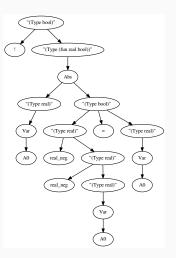
Aligned Formal and Informal Math - Flyspeck [CICM13, ITP'13]

Informal	Formal
----------	--------

Informal Formal	
Definition of [fan, blade] DSKAGVP (fan) [fan \leftrightarrow FAN]	
Let (V, E) be a pair consisting of a set $V \subset \mathbb{R}^3$ and a set E of unordered pairs of distinct elements of V . The pair is said to be a <i>fan</i> if the following properties hold.	
1. (CARDINALITY) V is finite and nonempty. [cardinality \leftrightarrow fan1] 2. (ORIGN) $0 \notin V$. [origin \leftrightarrow fan2] 3. (NOVPARALLE) if $\{\mathbf{x}, \mathbf{y}\} \notin \mathcal{E}$, then \mathbf{y} and \mathbf{w} are not parallel. [nonparallel \leftrightarrow fan6] 4. (INTERSECTION) For all $\varepsilon, \varepsilon' \in E \cup \{\{\mathbf{y}\} : \mathbf{w} \in V\}$. [Intersection \leftrightarrow fan7]	
$C(\varepsilon) \cap C(\varepsilon') = C(\varepsilon \cap \varepsilon').$	Informal Formal
When $arepsilon\in E,$ call $C^0(arepsilon)$ or $C(arepsilon)$ a blade of the fan.	$\frac{\text{aDSXGNVP}^2}{\text{Int} \text{ KM}(x,V,E)} \iff (\text{LWIONS E}) \text{ SUBSET V} \land \text{graph(E)} \land \text{fan1}(x,V,E) \land \text{fan2}(x,V,E) \land \text{fan3}(x,V,E) \land fan$
basic properties	basic properties
The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.	The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.
Informal Formal	Informal Formal
Lemma [] CTVTAQA (subset-fan)	<pre>Let CUTADAmprove('(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (E1:(real^3->bool)->bool) FM(x,V,E) /, E1 SUBSET E FM(x,V,E1);</pre>
If (V,E) is a fan, then for every $E'\subset E,$ (V,E') is also a fan.	<pre>FM(x,y,LL) , REPEAT GEN TAC THEN REWRITE TAC[FAN; fan1; fan2; fan6; fan7; graph]</pre>
Proof	THEN ASM_SET_TAC[]);;
This proof is elementary.	Informal Formal
Informal Formal	<pre>let XOHLED=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool).>bool) (v:real^3). FAN(x,V,E) / v IN V ==> cyclic set (set of edge v V E) x v',</pre>
Lemma [fan cyclic] XOHLED	MESON_TAC[CYCLIC_SET_EDGE_FAN]);;
$[E(v)\leftrightarrow { t set_of_edge}]$ Let (V,E) be a fan. For each ${f v}\in V,$ the set	
$E(\mathbf{v}) = \{\mathbf{w} \in V \ : \ \{\mathbf{v}, \mathbf{w}\} \in E\}$	
is cyclic with respect to $(0,\mathbf{v})$.	
Proof	
If $\mathbf{w}\in E(\mathbf{v}),$ then \mathbf{v} and \mathbf{w} are not parallel. Also, if $\mathbf{w} eq \mathbf{w}'\in E(\mathbf{v}),$ then	

Statistical Parsing of Informalized HOL


- · Experiments with the CYK chart parser linked to semantic methods
- · Training and testing examples exported form Flyspeck formulas
 - · Along with their informalized versions
- Grammar parse trees
 - · Annotate each (nonterminal) symbol with its HOL type
 - · Also "semantic (formal)" nonterminals annotate overloaded terminals
 - guiding analogy: word-sense disambiguation using CYK is common
- · Terminals exactly compose the textual form, for example:
- REAL_NEGNEG: $\forall x. -x = x$


```
(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Const (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real")))))
```

becomes

```
("ïType bool)" ! ("ïType (fun real bool))" (Abs ("ïType real)"
(Var A0)) ("ïType bool)" ("ïType real)" real_neg ("ïType real)"
real_neg ("ïType real)" (Var A0)))) = ("ïType real)" (Var A0)))))
```

Example grammars

CYK Learning and Parsing

- Induce PCFG (probabilistic context-free grammar) from the trees
 - · Grammar rules obtained from the inner nodes of each grammar tree
 - · Probabilities are computed from the frequencies
- · The PCFG grammar is binarized for efficiency
 - · New nonterminals as shortcuts for multiple nonterminals
- CYK: dynamic-programming algorithm for parsing ambiguous sentences
 - · input: sentence a sequence of words and a binarized PCFG
 - output: N most probable parse trees
- Additional semantic pruning
 - · Compatible types for free variables in subtrees
- · Allow small probability for each symbol to be a variable
- · Top parse trees are de-binarized to the original CFG
 - Transformed to HOL parse trees (preterms, Hindley-Milner)

Experiments with Informalized Flyspeck

- 22000 Flyspeck theorem statements informalized
 - 72 overloaded instances like "+" for vector_add
 - · 108 infix operators
 - forget all "prefixes"
 - real_, int_, vector_, nadd_, hreal_, matrix_, complex_
 - ccos, cexp, clog, csin, ...
 - vsum, rpow, nsum, list_sum, ...
 - · Deleting all brackets, type annotations, and casting functors
 - Cx and real_of_num (which alone is used 17152 times).
- online parsing/proving demo system
- 100-fold cross-validation

Online parsing system

- "sin (0 * x) = cos pi / 2"
- produces 16 parses
- · of which 11 get type-checked by HOL Light as follows
- · with all but three being proved by HOL(y)Hammer

```
sin (&0 * A0) = cos (pi / &2) where A0:real

sin (&0 * A0) = cos pi / &2 where A0:real

sin (&0 * &A0) = cos (pi / &2) where A0:num

sin (&0 * &A0) = cos pi / &2 where A0:num

sin (&(0 * A0)) = cos (pi / &2) where A0:num

sin (&(0 * A0)) = cos pi / &2 where A0:num

csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real

csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real^2

Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real

csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real

csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real^2
```

- First version (2015): In 39.4% of the 22,000 Flyspeck sentences the correct (training) HOL parse tree is among the best 20 parses
- its average rank: 9.34
- · Second version (2016): 67.7% success in top 20 and average rank 3.35
- · 24% of them AITP provable

Pointers to Formal Parsing

- Demo of the probabilistic/semantic parser trained on informal/formal Flyspeck pairs:
- http://colo12-c703.uibk.ac.at/hh/parse.html
- The linguistic/semantic methods explained in http://dx.doi.org/10.1007/978-3-319-22102-1_15
- Compare with Wolfram Alpha:
- https://www.wolframalpha.com/input/?i=sin+0+*+x+%3D+
 cos+pi+%2F+2

Acknowledgments

- Large portions of this presentation have been lifted from:
- The Mizar, HOL Light/Flyspeck, Isabelle, Coq/Feit-Thompson and Metamath libraries
- Talks and papers by Freek Wiedijk, John Harrison, Tom Hales
- Funding: Marie-Curie, NWO, ERC
- Collaborators:
 - Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
 - Petr Stepanek, Jiri Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder, Jan Jakubuv, Ondrej Kuncar, Martin Suda, ...
 - HOL(y)Hammer group in Innsbruck:
 - · Cezary Kaliszyk, Thibault Gauthier, Michael Faerber
 - ATP and ITP people:
 - Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow, Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...
 - Learning2Reason people at Radboud University Nijmegen:
 - Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze, Herman Geuvers
 - ... and many more ...

- Thanks for your attention!
- Two EU-funded 4-year PhD positions on the AI4REASON project
- Good background in logic and programming
- Interest in AI, Automated/Formal Reasoning, Machine Learning or Computational Linguistics
- Email to Josef.Urban@gmail.com